Search results for " Monte Carlo method"

showing 10 items of 107 documents

Critical phenomena without “hyper scaling”: How is the finite-size scaling analysis of Monte Carlo data affected?

2010

Abstract The finite size scaling analysis of Monte Carlo data is discussed for two models for which hyperscaling is violated: (i) the random field Ising model (using a model for a colloid-polymer mixture in a random matrix as a representative) (ii) The Ising bi-pyramid in computing surface fields.

Hybrid Monte CarloPhysicsQuantum Monte CarloMonte Carlo methodCondensed Matter::Statistical MechanicsDynamic Monte Carlo methodMonte Carlo integrationIsing modelMonte Carlo method in statistical physicsStatistical physicsPhysics and Astronomy(all)Condensed Matter::Disordered Systems and Neural NetworksMonte Carlo molecular modelingPhysics Procedia
researchProduct

Efficiency of quantum Monte Carlo impurity solvers for dynamical mean-field theory

2007

Since the inception of the dynamical mean-field theory, numerous numerical studies have relied on the Hirsch-Fye quantum Monte Carlo (HF-QMC) method for solving the associated impurity problem. Recently developed continuous-time algorithms (CT-QMC) avoid the Trotter discretization error and allow for faster configuration updates, which makes them candidates for replacing HF-QMC. We demonstrate, however, that a state-of-the-art implementation of HF-QMC (with extrapolation of discretization delta_tau -> 0) is competitive with CT-QMC. A quantitative analysis of Trotter errors in HF-QMC estimates and of appropriate delta_tau values is included.

Condensed Matter::Quantum GasesPhysicsStrongly Correlated Electrons (cond-mat.str-el)DiscretizationQuantum Monte CarloExtrapolationFOS: Physical sciencesCondensed Matter PhysicsDiscretization errorElectronic Optical and Magnetic MaterialsCondensed Matter - Strongly Correlated ElectronsDynamical mean field theoryImpurityDynamic Monte Carlo methodCondensed Matter::Strongly Correlated ElectronsStrongly correlated materialStatistical physics
researchProduct

Cross Correlations in Scaling Analyses of Phase Transitions

2008

Thermal or finite-size scaling analyses of importance sampling Monte Carlo time series in the vicinity of phase transition points often combine different estimates for the same quantity, such as a critical exponent, with the intent to reduce statistical fluctuations. We point out that the origin of such estimates in the same time series results in often pronounced cross-correlations which are usually ignored even in high-precision studies, generically leading to significant underestimation of statistical fluctuations. We suggest to use a simple extension of the conventional analysis taking correlation effects into account, which leads to improved estimators with often substantially reduced …

Statistical Mechanics (cond-mat.stat-mech)Monte Carlo methodFOS: Physical sciencesGeneral Physics and AstronomyStatistical fluctuationsDynamic Monte Carlo methodMonte Carlo method in statistical physicsStatistical physicsCritical exponentScalingCondensed Matter - Statistical MechanicsImportance samplingMonte Carlo molecular modelingMathematicsPhysical Review Letters
researchProduct

Monte Carlo Simulation of Crystal-Liquid Phase Coexistence

2016

When a crystal nucleus is surrounded by coexisting fluid in a finite volume in thermal equilibrium, the thermodynamic properties of the fluid (density, pressure, chemical potential) are uniquely related to the surface excess free energy of the nucleus. Using a model for weakly attractive soft colloidal particles, it is shown that this surface excess free energy can be determined accurately from Monte Carlo simulations over a wide range of nucleus volumes, and the resulting nucleation barriers are completely independent from the size of the total volume of the system. A necessary ingredient of the analysis, the pressure at phase coexistence in the thermodynamic limit, is obtained from the in…

Materials scienceMonte Carlo methodNucleation01 natural sciencesMolecular physics010305 fluids & plasmasHybrid Monte Carlo0103 physical sciencesThermodynamic limitDynamic Monte Carlo methodClassical nucleation theoryKinetic Monte Carlo010306 general physicsMonte Carlo molecular modeling
researchProduct

Phase transitions in nonadditive hard disc systems: a Gibbs ensemble Monte Carlo Study

2007

we study the properties of a model fluid in two dimensions with Gibbs ensemble Monte Carlo (GEMC) techniques, in particular we analyze the entropy-driven phase separation in case of a nonadditive symmetric hard disc fluid. By a combination of GEMC with finite size scaling techniques we locate the critical line of nonadditivities as a function of the system density, which separates the mixing/demixing regions and compare with a simple analytical approximation.

Condensed Matter::Soft Condensed MatterCanonical ensemblePhysicsPhase transitionCritical lineMonte Carlo methodDynamic Monte Carlo methodStatistical physicsFunction (mathematics)ScalingMixing (physics)
researchProduct

Path-integral Monte Carlo study of crystalline Lennard-Jones systems.

1995

The capability of the path-integral Monte Carlo (PIMC) method to describe thermodynamic and structural properties of solids at low temperatures is studied in detail, considering the noble-gas crystals as examples. In order to reduce the systematic limitations due to finite Trotter number and finite particle number we propose a combined Trotter and finite-size scaling. As a special application of the PIMC method we investigate $^{40}\mathrm{Ar}$ at constant volume and in the harmonic approximation. Furthermore, isotope effects in the lattice constant of $^{20}\mathrm{Ne}$ and $^{22}\mathrm{Ne}$ are computed at zero pressure. The obtained results are compared with classical Monte Carlo result…

Hybrid Monte CarloPhysicsQuantum Monte CarloMonte Carlo methodDynamic Monte Carlo methodMonte Carlo method in statistical physicsKinetic Monte CarloStatistical physicsMolecular physicsPath integral Monte CarloMonte Carlo molecular modelingPhysical review. B, Condensed matter
researchProduct

Monte Carlo calculation of dose rate distributions around 192Ir wires.

1997

Monte Carlo calculations of absolute dose rate in liquid water are presented in the form of away-along tables for 1 and 5 cm 192 Ir wires of 0.3 mm diameter. Simulated absolute dose rate values can be used as benchmark data to verify the calculation results of treatment planning systems or directly as input data for treatment planning. Best fit value of attenuation coefficient suitable for use in Sievert-integrals-type calculations has been derived based on Monte Carlo calculation results. For the treatment planning systems that are based on TG43 formalism we have also calculated the required dosimetry parameters.

PhysicsLiquid waterRadiotherapy Planning Computer-AssistedMonte Carlo methodBrachytherapyBiophysicsRadiotherapy DosageGeneral MedicineReference StandardsIridium RadioisotopesBiophysical PhenomenaComputational physicsEvaluation Studies as TopicAttenuation coefficientNeoplasmsDynamic Monte Carlo methodDosimetryHumansComputer SimulationStatistical physicsBenchmark dataDose rateMonte Carlo MethodMedical physics
researchProduct

Monte Carlo simulation of alpha spectra in low-geometry measurements

1994

Abstract Monte Carlo simulation of alpha spectra obtained with semiconductor detectors in low-geometry has been developed. The proposed method reproduces adequately experimental spectra of alpha emitters by taking into account the energy losses and trajectory changes of alpha particles as consequences of their interactions in the source, backing and detector.

PhysicsNuclear and High Energy PhysicsAlpha (programming language)Monte Carlo methodDetectorDynamic Monte Carlo methodAlpha particleStatistical physicsInstrumentationEnergy (signal processing)Spectral lineSemiconductor detectorComputational physicsNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

HIGH-PRECISION MONTE CARLO DETERMINATION OF α/ν IN THE 3D CLASSICAL HEISENBERG MODEL

1994

To study the role of topological defects in the three-dimensional classical Heisenberg model we have simulated this model on simple cubic lattices of size up to 803, using the single-cluster Monte Carlo update. Analysing the specific-heat data of these simulations, we obtain a very accurate estimate for the ratio of the specific-heat exponent with the correlation-length exponent, α/ν, from a usual finite-size scaling analysis at the critical coupling Kc. Moreover, by fitting the energy at Kc, we reduce the error estimates by another factor of two, and get a value of α/ν, which is comparable in accuracy to best field theoretic estimates.

CouplingField (physics)Monte Carlo methodGeneral Physics and AstronomyStatistical and Nonlinear PhysicsClassical Heisenberg modelComputer Science ApplicationsTopological defectComputational Theory and MathematicsDynamic Monte Carlo methodExponentStatistical physicsScalingMathematical PhysicsMathematicsInternational Journal of Modern Physics C
researchProduct

Stochastic Approach for Optimal Positioning of Pumps As Turbines (PATs)

2021

A generic water system consists of a series of works that allow the collection, conveyance, storage and finally the distribution of water in quantities and qualities such as to satisfy the needs of end users. In places characterized by high altitude differences between the intake works and inhabited centres, the potential energy of the water is very high. This energy is attributable to high pressures, which could compromise the functionality of the pipelines

Mathematical optimizationEnergy recoveryOptimization problemEnvironmental effects of industries and plantsRenewable Energy Sustainability and the Environmentbusiness.industryComputer scienceenergy recoveryGeography Planning and DevelopmentMonte Carlo methodSortingTJ807-830Management Monitoring Policy and LawTD194-195Renewable energy sourcesEnvironmental sciencesPipeline transportSoftwareGenetic algorithmGE1-350pump as turbinebusinesswater distribution systemEnergy (signal processing)Bayesian Monte Carlo methodSustainability
researchProduct